Понятия со словосочетанием «открытое множество»

Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей - не является открытым.

Связанные понятия

Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Изоли́рованная то́чка в общей топологии — это такая точка множества, что пересечение некоторой её окрестности с множеством состоит только из этой точки.
Индуци́рованная тополόгия — естественный способ задания топологии на подмножестве топологического пространства.
Вну́тренняя то́чка мно́жества в топологии есть точка, входящая в данное множество вместе с некоторой своей окрестностью.
Локально выпуклое пространство — линейное топологическое пространство с системой полунорм, удовлетворяющей некоторым условиям.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Локально линейно связное пространство ― топологическое пространство, в котором для любой точки и любой её окрестности имеется меньшая линейно связная окрестность. Другими словами, у каждой точки найдётся база окрестностей, состоящая из линейно связных множеств.
Компактификация — операция, которая преобразует топологические пространства в компактные.
Теорема Мура о факторпространстве — классическое утверждение двумерной топологии, даёт достаточное условие на то, что факторпространство сферы гомеоморфно двумерной сфере.
Метрика Хаусдорфа есть естественная метрика, определённая на множестве всех непустых компактных подмножеств метрического пространства. Таким образом, метрика Хаусдорфа превращает множество всех непустых компактных подмножеств метрического пространства в метрическое пространство.
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Индуци́рованная или относи́тельная ме́трика ― естественный способ задания метрики на подмножестве метрического пространства.

Подробнее: Индуцированная метрика
Локально тривиальное расслоение — расслоение, которое локально выглядит как прямое произведение.
Хаусдорфово пространство — топологическое пространство, удовлетворяющее сильной аксиоме отделимости T2.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Корасслоение — определённый тип непрерывных отображений между топологическими пространствами с определяющим свойством, двойственным к свойству поднятия гомотопий, выполняющихся для расслоений.
Потенциальный оператор — математический оператор, отображающий открытое множество вещественного нормированного пространства в сопряжённое пространство и являющийся градиентом некоторого функционала с областью значений в сопряжённом пространстве.
Теорема об инвариантности области утверждает, что образ непрерывного инъективного отображения Евклидова пространства в себя открыт.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Свя́зность Ле́ви-Чиви́ты или связность, ассоциированная с метрикой — одна из основных структур на римановом многообразии.
Конечное топологическое пространство — топологическое пространство, в котором существует лишь конечное число точек.
Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
Симплициальный компле́кс, или симплициальное пространство, — топологическое пространство с заданной на нём триангуляцией, то есть, неформально говоря, склеенное из топологических симплексов по определённым правилам.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Топологическое векторное пространство, или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Лине́йно свя́зное простра́нство — это топологическое пространство, в котором любые две точки можно соединить непрерывной кривой.
Экспоненциальная точная последовательность — фундаментальная короткая точная последовательность пучков, используемая в комплексной алгебраической геометрии.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Локально компактное пространство — топологическое пространство, у каждой точки которого существует открытая окрестность, замыкание которой компактно. Иногда используется более слабое определение: достаточно чтобы каждая точка имела компактную окрестность (открытость окрестности здесь не предполагается). В случае хаусдорфова пространства эти определения эквивалентны.
Разбиение единицы — конструкция, используемая в топологии для удобства работы с многообразием как множеством карт.
Тополо́гия Зари́сского, или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Си́мплекс или n-мерный тетра́эдр (от лат. simplex ‘простой’) — геометрическая фигура, являющаяся n-мерным обобщением треугольника.
Симметрическое пространство — риманово многообразие, группа изометрий которого содержит центральные симметрии с центром в любой точке.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
Теорема Стоуна о представлении булевых алгебр утверждает, что каждая булева алгебра изоморфна некоторому полю множеств.
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
Ультрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов.
Вложение Куратовского — определённое изометрическое вложение метрического пространства в банахово пространство непрерывных ограниченных функций на нём.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Трубчатая окрестность подмногообразия в многообразии — это открытое множество, окружающее подмногообразие и локально устроенное подобно нормальному расслоению.
Абелево многообразие — это проективное алгебраическое многообразие, являющееся алгебраической группой (это значит, что закон композиции задаётся регулярной функцией).
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
За́мкнутое мно́жество — подмножество пространства, дополнение к которому открыто.
В алгебраической геометрии дивизоры являются обобщением подмногообразий некоторого алгебраического многообразия коразмерности 1. Существуют два различных таких обобщения — дивизоры Вейля и дивизоры Картье (названы в честь Андре Вейля и Пьера Картье), эти понятия эквивалентны в случае многообразий (или схем) без особенностей.

Подробнее: Дивизор (алгебраическая геометрия)
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я